Skip to content

1-Introduction

1.0 Goal and structure of this website. Paradigms and anomalies.

In my (archived 2006-2023) website  sections “2. Experimental”, “3. Theory”, “4. Applications” and “5. Consequences” the website’s core message (2006-2023) can be found. That message is the experimental and theoretical proof of the existence of flawed paradigms in CS (Contemporary Science), involving photon phenomena in real space. So you could eventually skip this Introduction and immediately start reading the (submenu) sections 2 to 5.

However you could eventually be interested to have first some information about the evolution of the paradigms (related to space, time and velocity) during the history of science as described in the sections 1.1 to 1.3 below. CPBDs (Contemporary Paradigm Believers and Defenders) indeed are often not aware of the extremely important paradigm processes as described by Thomas Kuhn in his book “The Structure of Scientific Revolutions“: (https://en.wikipedia.org/wiki/The_Structure_of_Scientific_Revolutions).

Having a look at those views from Thomas Kuhn could eventually change the closed-state-of-mind of those CPBDs and thus halt their typical blocking type of strategy towards the, by me indicated, urgently needed paradigm shifts. An open state of mind by a CPBD is evidently necessary to understand the groundbreaking scientific importance of my scientific findings, including the result of my straightforward laser experiment, as presented within Figure 2 (explained in section 2. Experimental).

Figure 2 Result of my straightforward laser experiment

Figure 2 reveals an irrefutable massive experimental anomaly regarding the paradigms that the CPBDs so firmly believe in. According to Popper’s falsification principle one single detected irrefutable anomaly can be devastating for the CS’s paradigms, linked to that anomaly. Even despite the “large number of verifications/experiments” which are considered by the CPBDs to have “proven” their CS paradigms. CS paradigms which those CPBDs then consider as “paradigms written is stone for eternity”. Even Einstein stated “only one experiment can prove me wrong“.

Next to the importance of the straightforward laser experiment and the predicted experimental result, as demonstrated in Figure 2, the theoretical importance of Figures such as 9, 10, 11 and 24 at this website also need to be understood by the CPBDs. Those figures indeed reveal the existence of massive theoretical anomalies with respect to multiple CS paradigms. The photon trajectory principles, as represented by these figures, were even the basis for the design of my successful and straightforward laser experiment (experimental result thus in fact predicted by those figures). Such should become immediately very clear to any CPBD who then should experience the needed massive Gestalt Switch. Therefore diving somewhat into the topic of paradigms and their “evolution within the history of science” could help in diverting the closed state of mind of CPBDs,  being restricted to their CS paradigms, towards a CPBD’s acceptance of the falsifiability of paradigms (Karl Popper’s falsification principle, based on anomalies, to be valid at whatever time instance in the history of science, thus also valid in the present).

1.1 General remarks on paradigms and their tenacity in the history of science

Human perceptions/views evolved during many centuries, from the philosophers (and scientists) belonging to the “ancient” Greeks , the Age of Rationalism (Reason), the Age of Enlightenment, the Industrial Revolution and the contemporary time area. According to Thomas Samuel Kuhn, as described in his book “The Structure of Scientific Revolutions”, many scientific paradigms did evolve in the Modern Times. A paradigm typically shows a period of emergence, a period of culmination and often a period of decline during its shift to another, enhanced or even fully replacing, paradigm. During its lifetime, a paradigm is fiercely defended by its supporters (believers and defenders of the paradigm, CPBDs).

The totally flawed geocentric paradigm was an extremely long standing one in the history of science. It is known that it took 14 centuries of human conflicts before this extremely erroneous geocentric paradigm was finally countered, even including harsh repressions by e.g. the Inquisition. The death of Giordano Bruno in 1600 (Singh, 2005, p. 43; Law, 2007, p. 272) and the house arrest of Galileo Galilei in 1633 by that same Inquisition (Sing, 2005, pp. 70-74) can be mentioned. Giordano Bruno wrote many books, of which one had the title “About the infinite universe and the worlds” – “Dell’infinito universe e mondi” – and lectured in many places in Europe (Paris, Oxford, Marburg, Wittenberg, Prague, Helmstedt, Frankfurt) (Störig, 2008, p. 137). This all did not save him from the Inquisition’s death penalty after being betrayed by his host in Venice during an invited visit in 1593 and after being kept in jail for seven years by the Inquisition, without ever renouncing his views on a (heliocentric) universe. This again illustrates the ability of human minds towards completely conflicting views, up to the utmost extreme and revolting point of the destruction in those earlier times of the mind of the opponent in order to “protect”, to the extreme, a paradigmatic/dogmatic point of view.

Another abandoned paradigm was Descartes’ “mechanical” universe without a vacuum but a space consisting of very small “particles”, interacting in a pure mechanical way (through collisions). Descartes was convinced about the concept of streams of such interacting small particles in space in which a planet then drifts in an analog way as a boat floats on a river (Guicciardini, 2005, pp. 14-15).The findings of Newton regarding gravitational attraction forces “at distance” between the sun and the orbiting planets completely eradicated Descartes’ “particles” paradigm concept of space.

In his “Principia”, Newton defined as a man of genius absolute time, absolute space and absolute velocity. However he was unable to present experimental proof of their existence. The succeeding controversy by philosophers and scientists (e.g. by Mach) culminated in the rejection of absolute space.

The Michelson and Morley experiment, as described within their paper “On the relative motion of the Earth and the Luminoferous Ether” (1887) is still considered by CS as one of the most important fundamental experiments on physics. The null-result from their experiment resulted in a new paradigm that is still accepted by CS, in an irrational/incomprehensible manner since I falsified that paradigm.

In science, graphical representations assist in describing the phenomena, occurring in reality. Such representations are indicated as “models”. John von Neumann stated : “The sciences mainly make models. By a model is meant a mathematical construct which, with the addition of certain verbal interpretations, describes the observed phenomena”. Also Husserl reproached the situation in which science is wrongly considered by many people/scientists to “show the world as it is“. Many CPBDs in fact only “think from within their paradigm boxes” (as a result from their training, in fact from “being conditioned in the paradigms”), without realizing any longer that science is merely a construction that tries to objectify the (outside) world. An extreme “thinking from within the box” can be compared to authoritative “dogmatic” thinking. For those CPBDs, paradigms as published in the scientific literature can not be disputed since in their minds, the paradigms are and can only be “true” (forever), since they are published and since they “believe” in them from specific experimental results (“verifications”). Regarding the “many proofs by experiments” (“verifications”) – argument: have a look at my multiple critiques in my publications regarding CS paradigms such as the CS Michelson-Morley experiment paradigm, the CS Lorentz contraction paradigm, the CS light clock paradigm, Mach’s relativity paradigm, the CS falling elevator relativity paradigm, the CS relativity of simultaneity paradigm, the CS “possibility to travel in the future” paradigm (Langevin’s twin paradox), the CS “mirror in the train” paradigm, the CS Mercury perihelion “anomaly” relativistic solution paradigm, the CS relativistic bending of starlight by the sun paradigm (the CS Eddington experiment paradigm) etc.

The graphical/mathematical and linguistic (verbal) model approach in science is then expected to at least correspond as close as possible to reality (to “save the phenomena”). It is custom practice in physics/optics to graphically represent light phenomena as a ray-of-light (a CS paradigm), thus through a primitive and simplistic representation of straight geometrical lines. Consequently, if such a graphical representation would show an inconsistency regarding the real light (photons) phenomena, it should be possible to demonstrate that inconsistency experimentally. Indeed, as is shown on this website and from a straightforward laser experiment, the simplistic approach of describing photon phenomena through geometrical ray-of-light lines, is proven by me to not save the photon phenomena. From Popper’s falsification principle through an irrefutable anomaly, it is known that a paradigm becomes obsolete if a severe theoretical and/or experimental anomaly can be presented which does not fit the paradigm and can not be explained by the paradigm. Such important theoretical and experimental anomalies are in fact presented in this website.

1.2 Early history. Views of ancient Greek philosophers on matter, movement, time and space.

Profound philosophical reflections on space, time, matter and velocity already date from the early Greek philosophers in the pre-Socratic period. Anaximander described the earth as floating in space (Störig, 2008, p. 132). Leucippus and his student Democritus (born 460 BCE) believed that all matter consisted of indivisible elements, called “atoma” (Störig, 2008, p. 144). Next to atoma, Democritus also supported the existence of “void” (vacuum) since void allows the atoma to move. According to Democritus, atoma do not contain any void. He contradicted Parmenides (born 540 BCE) who believed that “movement” was impossible (Störig, 2008, p. 137). In Parmenides’ mind, the displacement of an object from one location to a new location would demand empty space, which the object could move to. However, he considered empty space as “nothing” and, since in his mind “nothing does not exist” he also denied the existence of movement. To Parmenides, movement was thus only an illusion in the human’s mind.

Parmenides’ student Zeno is famous for his paradoxes on movement (Störig, 2008, p. 138). One paradox by Zeno involved the story of a contest between Achilles and a turtle. The turtle was allowed to have a head start. The distance between Achilles and the turtle would keep going on to be halved forever, to the extent that Achilles would never be able to catch on with the turtle (Hamlyn, 1993, pp. 29-30). Another paradox involves a flying arrow: according to Zeno, the arrow can be considered to be “at rest at each time instant”. Therefore the arrow trajectory is merely a collection of positions “at complete rest”. Zeno concluded that movement is thus not existing. The philosophical purpose of Zeno’s paradoxes was to point to inconsistencies in opinions/views, in a way that human perceptions need to be questioned (Störig, 2008, p. 139).

It could be remarked that the Greek philosophers were in fact very near the concept of the division in infinitely small intervals of time or distance with respect to the movement of material objects (arrow “at rest at each time instant”; the “forever halving” of the distance between Achilles and the turtle) along their trajectories. It is indeed a somewhat limited step from Zeno’s paradoxes to extend a reasoning towards a division of time into an infinitesimal small period “dt” and an according infinitesimal small distance “ds”, traveled by the material object. This results into the instantaneous traveled distance “ds” during the time interval “dt” resulting in the instantaneous velocity “v=ds/dt”. Perhaps Newton or Leibniz were inspired with Zeno’s approach of a distance to be halved forever with respect to their invention of mathematical calculation techniques based on the infinitesimal small (see 1.3)?

As well Democritus as Parmenides and Zeno were reflecting upon the notions of “void” (space, vacuum) and movement of material objects but were opposed in opinion. This also illustrates the inconclusive way in which human minds function and still functions nowadays: individuals can produce completely opposing perceptions while arguing that their personal view is correctly representing the reality, outside their minds. Since there is only one single reality outside the human brain, it is thus clear that the simultaneous occurrence of (opposing) multiple models in the minds of philosophers or scientists are indicative for the limitations of model-approaches in the human mind. From the fact of several conflicts of minds/opinions during the history of science, the historic existence of wrong paradigms is stressed and therefore also the need to oppose flawed paradigms. The existence of flawed contemporary paradigms is indeed also still plausible today. CPBDs need to realize that.

Leucipus and Democritus believed in an “empty space” in which the “atoma“ (the “dense” particles without any void) are present and can move (Guth, 1998, p. 15). Needless to state that even nowadays there is no clear “what is” understanding of space or matter (particles). Modern science has used the word “atom” for the configuration of an extremely small “atom” nucleus consisting of protons and neutrons while electrons revolve in space around the atom nucleus. Since atom nuclei can be divided (nuclear fission) the word “atom” is somewhat doing wrong towards Democritus’ definition of “atoma” to be the smallest indivisible particles. Nowadays, e.g. leptons (Guth, 1998, p. 134) are considered to be elementary indivisible particles, which thus could meet the “definition” by Democritus. Even if such “elementary” particles in the end would be proven to be further divisible, the new “elementary” particle could then end up to be Democritus’ ultimate “atoma”.

The notions matter, space and movement in the minds of those early philosophers evidently were a source of inspiration for later philosophers when defining the concept of velocity of material objects (build from atoms). Philolaus (470 BC) already claimed that the earth rotates around the sun (Singh, 2005, p. 27). Aristarchos (310 BC) even expanded such vision into all known (at that time visible) planets rotating around the sun (even in the correct orbit order) while the stars are in a “fixed” position (Singh, 2005, pp. 27-29).

The heliocentric view of Philolaus and Aristarchos was however completely rejected by Plato (428 BC) and Aristotle (384 BC) (Sing, 2005, pp. 31-34). They supported a geocentric universe model, consisting of transparent crystal spheres rotating around a stationary earth while fixing the planets, sun and stars on the surface of the corresponding rotating spheres. Ptolemy added mathematical “models” to that perception of a geocentric universe on the basis of nested circles and epicycles (Singh, 2005, pp. 34-37).

1.3 History. Galileo Galilei and Isaac Newton on motion and time. Mach’s critique on absolute velocity.

Galileo (1564-1642) used rolling spheres on ramps, at different angles, in order to measure their trajectory travelling time intervals (Hamlyn, 1993, p. 144; Mugnai, 2005, pp. 90-91). He deduced from the data a mathematical relation between distance and the square of time. Galileo also pointed to the need of having a reference point when observing motion. He stated that a person who is travelling in a ship while being present in a ship’s windowless room, thus without any visual contact with the ship’s surroundings, is unable to conclude if and how fast (s)he is moving when sailing at a constant speed (Singh, 2005, pp.93-94). In that respect, Galileo introduced the concept of relativity (Singh, 2005, p.94). According to Galileo, movement of an object can only be characterized relative to a second material object (“at rest”) as the reference.

A leap in the perception of velocity and time occurred when Isaac Newton defined his laws in his monumental work “Philosophiae Naturalis Principia Mathematica” (1687). As many of his contemporaries, Newton was interested in the movement of planets and studied the views of Galileo, Copernicus and Kepler. Newton reflected on the “fluent changes in time” of points in geometrical objects and from those reflections invented his fluxion method. He created the notion of momentarily velocity as an infinitesimal small displacement “ds” within an infinitesimal small time interval “dt”. Through his invention of infinitesimal calculus, Newton was able to describe our planet’s orbit and his laws on movement of material objects.

However, he ran into a serious problem since he needed to univocally define both parameter values “ds” and “dt” in the velocity equation. From Galileo’s relativity principle, the value of velocity depends upon the observer’s reference system. A person travelling in a train compartment considers her/his seat’s velocity equal to zero (since ds=0). This is obviously not the case for a person who is “at rest” beside the railway track and observes the travelling train: then the velocity of a seat is not equal to zero but equals the train’s velocity relative to the train track “at rest” (ds≠0). The definition of “velocity” thus invokes a profound philosophical problem. How solving the severe paradox, where ds=0 and ds≠0 are able to exist simultaneously in the minds of humans while there is only one single reality outside those human minds ? How to define time and how to define distance in space ? What is in fact time and what is in fact distance (as displacement in space) ?

Newton solved this paradox in a brilliant way by introducing the concept of “absolute” time and “absolute” space, thus also “absolute” motion (Newton, (1687), pp. 77-82). With respect to time, Newton stated: “The absolute, true and mathematical time flows on itself and is uniform, without any relation to whatever external material object”. Regarding distance, evidently being linked to space, he used the same approach by stating that space is absolute, also without any relation to whatever external material object. Space itself thus “has an absolute velocity equal to zero” since space is at perfect (absolute) rest, according to the definition of absolute space. When having a material object’s velocity in that absolute space, the object thus has also an absolute velocity according to Newton’s absolute “dt” and absolute “ds” values.

Absolute velocity of an object therefore can be considered as being measured against Newton’s absolute space as the ultimate reference, since being at perfect rest. Such outstanding abstract approach by Newton’s mind testifies about Newton’s genius to consider such an ultimate reference. He was even aware of the immens character of his abstract thinking since he stated himself “It is indeed a matter of great difficulty to discover, and effectually to distinguish, the true motions of particular bodies from the apparent; because the parts of that immovable space, in which those motions are performed, do by no means come under the observation of our senses. Yet the thing is not altogether desperate: for we have some arguments to guide us, partly from the apparent motions, which are the differences of the true motions; partly from the forces, which are the causes and effects of the true motions.“ (Newton, (1687), p. 82).

However, this invoked one of the largest conflicts within physics. Newton was not able to prove the existence of “absolute space” and could only suggest some indirect experiments (the rotating water bucket pending from a long torsional cord (https://en.wikipedia.org/wiki/Bucket_argument) (Newton, (1687), p. 81) and the thought experiment involving the rotation in free space of two masses (globes), interconnected by a cord (https://en.wikipedia.org/wiki/Rotating_spheres) (Newton, (1687), p. 82) to support his theory. With respect to the thought experiment involving the two globes he stated “And thus we might find both the quantity and the determination of this circular motion, even in an immense vacuum, where there was nothing external or sensible with which the globes could be compared.” Despite the views of a genius, the lack of experimental proof (as he indicated himself by stating “because the parts of that immovable space, in which those motions are performed, do by no means come under the observation of our senses”) questioned Newton’s theory on absolute space and brought about an antithesis, supported by multiple philosophers/scientists such as Leibniz and Mach.

In a thought experiment by Mach he imagines the universe to be emptied of all material objects (stars, planets, galaxies, …) except for one observer floating freely in space. Mach then stated that the floating observer is unable to measure her/his absolute velocity without a method to measure absolute velocity against the “invisible absolute space”. In fact Mach merely repeated what Newton already indicated himself; see Newton’s statement “even in an immense vacuum, where there was nothing external or sensible with which the globes could be compared”. Mach denied the existence of absolute velocity from the lack of a conclusive experimental measuring method which would be able to use “space at rest” as a reference. Mach therefore also simply denied the existence of absolute space. Note here however that my irrefutable principle of a RVMD totally falsifies Mach’s thought experiment: Mach’s floating astronaut can use a three-dimensional RVMD to measure her/his velocity and travelling direction in real space without any need for a reference of a secondary material object in that real space.

A striking “Mach versus Newton” conflict description can be found in Greene (Greene, 2006, pp. 53-54). Greene indicates that the ideas of Mach were as a “gift being send from heaven”, finally offering him a theory where only relative motion had meaning. Greene continues that, instead of selecting Newton’s reference system for motion (an invisible something called absolute space), the choice by Mach of the reference system, being based on all the visible matter in the universe, is very clear to anyone. Greene then stresses that Mach’s view was the answer and that he, as Einstein, belonged to a large number of physicists who were excited to learn about Mach’s vision. Greene also raises the question if Newton was that much carried away with the vortex within his water bucket experiment that Newton then came up with a watery conclusion on the existence of an invisible absolute space as the absolute and ultimate reference. Greene’s description is an interesting illustration of the philosophical conflict and disbelieve within physics with respect to the definition of absolute space by Newton. But Greene’s views are of course now also fully falsified through my RVMD concept.

The human minds of the CPBDs are able to tenaciously believe and defend totally flawed paradigms, but in the end another tenacious human mind can also irrefutably falsify those flawed paradigms. “In the end” however is now taking over 15 years (since 2006) to win the uphill scientific battle against the CPBDs who unconditionally keep believing and defending their totally flawed CS paradigms, based on light phenomena. The archive of this website 2006-2023 has not yet witnessed the total victory, notwithstanding my final success in publishing my series of three interlinked official Elsevier scientific publications. The CPBDs in the domain of photon phenomena will however not be able to keep on believing and defending their totally flawed CS paradigms (based on photon phenomena) and will finally have to admit their scientific defeat. The CPBDs surely will not be able to resist much longer since Artificial Intelligence (GPT-4) has already fully supported my views (see “My Publications” and there the analysis and comments of GPT-4 of/on my series of three Elsevier publications), thus clearly exposing the irrational/incomprehensible closed state of mind of the CPBDs. It all will definitely result in what Kuhn called “Scientific Revolution” (https://en.wikipedia.org/wiki/Thomas_Kuhn) since major paradigm shifts will evidently result from my findings in the domain of photon phenomena and from all of my publications, in that respect. That is moreover also the basis that I already chose in 2006 for the title of my book “A shattered Equivalence Principle in Physics and a future History of multiple Paradigm Big Bangs in “exact” science.” I will hold on to my title of my book… “future History” means that I already write in my book a historical report about what will evidently happen in the near future with respect to massive paradigm shifts in CS. Normally one reports the history after the events took place but I already report on before hand in my book the history that still needs to happen, but a history that surely will happen. A likewise “back to the future” situation…

REFERENCES

Bauerlein R., Newton to Einstein : The Trail of Light, Cambridge University Press, 1992
Barrow J. D., Theories of Everything, Vintage, New York, 1990
Barrow J. D., The Origin of the Universe, Basic Books, New York, 1994
Boden M.E., The Creative Mind : Myths and Mechanisms, Basic Books, New York, 1992
Braeckman A., Raymaekers B., G. Van Riel, Wijsbegeerte, Lannoo, Tielt, 2010
Bronowski J., The ascent of man, Science Horizon Inc., 1973
Bruno Giordano, http://en.wikipedia.org/wiki/Bruno,_Giordano
Casti J.L., Paradigms Lost, William Morrow, New York, 1989
Casti J.L., Alternate Realities. Mathematical Models of Nature and Man, John Wiley and Sons Ltd, 1989
Casti J.L., Searching for Certainty : What Scientists Can Learn about the Future, William Morrow, New York, 1991
Casti J.L., Reality Rules : II. Picturing the world in mathematics – The Frontier, John Wiley and Sons Ltd, 1997
Clifford W., Was Einstein Right ?, Basic Books, New York, 1999
Cohen J., Stewart I., The Collapse of Chaos. Discovering Simplicity in a Complex World, Viking, New York,1994
de Boer Th. et al., De verbeelding van het denken. Geïllustreerde geschiedenis van de westerse en oosterse filosofie, Contact, Amsterdam, Antwerpen, 2004
Davies P.C.W., Space and Time in the Modern Universe, Cambridge University Press, Cambridge, 1977
Davies P.C.W., About Time, Einstein’s unfinished revolution, Penguin Books Ltd, 1996
Davies P.C.W., God & The New Physics, Penguin Books Ltd, 2006
Delius C., Gatzmeier M., Sertcan D., Wünscher K., Geschichte der Philisophie von der Antike bis heute, Tandem Verlag GmbH, Königswinter, 2005
Descartes’ mechanical view, http://en.wikipedia.org/wiki/Matter and http://en.wikipedia.org/wiki/Mechanism_(philosophy)
Ferris T., The Mind’s Sky, Bantam, New York, 1992
Feynmann R.P., QED : The Strange Theory of Light and Matter, Princeton University Press, Princeton, 1985
Fuller S., Kuhn vs Popper, Icon, 2003
Fuller S., Science, Acumen Publishing, 2009
Giere R.N., Explaining Science, University of Chicago Press, Chicago, 1988
Giere R.N., Scientific Perspectivism, University of Chicago Press, Chicago, 2010
Gott J.R., Time Travel in Einstein’s Universe, Houghton Mifflin, Boston, 2001
Greene B., The Elegant Universe, Random House, 2000
Guicciardini N., Newton – Alchemist, filosoof en natuurwetenschapper (Dutch edition of the book “Newton – un filosofa della natura e il sistema del mondo”), Natuurwetenschap & Techniek, Van Veen Magazines, Amsterdam, 2005
Greene B., De ontrafeling van de kosmos (Dutch edition of the book “The Fabric of the Cosmos”), het Spectrum, Amsterdam, 2006
Griffiths D. J., Introduction to electrodynamics, Prentice Hall, New Jersey, 1999
Guth A., Het uitdijende heelal, Wat gebeurde er voor de oerknal ? (Dutch edition of the book “The Inflationary Universe”), Contact, Amsterdam, 1998
Hawking S., Penrose R., The Nature of Space and Time, Princeton University Press, Princeton, 1996
Husserl, http://en.wikipedia.org/wiki/Husserl
Horsten L., Douven I., Weber E., Wetenschapsfilosofie (Dutch edition of the book “Philosophy of Science”), Van Gorcum, Assen, The Netherlands, 2007
Hamlyn D.W., Westerse filosofie, Een geschiedenis van het denken (Dutch edition of the book “A History of Western Philosophy”), Atrium, Alphen aan den Rijn, The Netherlands, 1993
Kaku M., Einstein’s Cosmos, Weidenfeld & Nicolson, 2004
King P.J., One hundred Philosophers, Quarto Publishing Plc, London, 2010
Krauss L.M., Fear of Physics. A Guide for the Perplexed, Basic Books, New York, 1993
Kuhn T., The Structure of Scientific Revolutions, University of Chicago Press, Chicago, 1962
Kuhn S.T., http://en.wikipedia.org/wiki/Thomas_Kuhn ; http://plato.stanford.edu/entries/thomas-kuhn/
Law S., Filosofie (Dutch edition of the book “Eyewitness Companions – Philosophy”), Focus, Houten, The Netherlands, 2007
Mach E. , http://en.wikipedia.org/wiki/Philosophy_of_space_and_time#Mach ; http://en.wikipedia.org/wiki/Inertial_frame_of_reference#Absolute_space
Michelson A., Morley E., On the Relative Motion of the Earth and the Luminoferous Ether, American Journal of Science, No. 203, Vol. XXXIV, November 1887, pp. 333-345, http://www.aip.org/history/exhibits/gap/PDF/michelson.pdf
Mosley M., Lynch J., The Story of Science. Power, Proof and Passion, Octopus Publishing, London, 2010
Mugnai M., Leibniz – Filosoof en mathematicus (Dutch edition of the book “Leibniz, vita di un genio tra logica, matematica e filosofia”), Natuurwetenschap & Techniek, Van Veen Magazines, Amsterdam, 2005
Newton I., Philosophiae Naturalis Principia Mathematica, http://www.archive.org/details/newtonspmathema00newtrich, book is freely downloadable as newtonspmathema00newtrich_bw.pdf
Penrose R., The Emperor’s New Mind : Concerning Computers, Minds and the Laws of Physics, Oxford, 1989
Paradigm (shift), http://en.wikipedia.org/wiki/Paradigm and http://en.wikipedia.org/wiki/Paradigm_shift
Popper K., The logic of Scientific Discovery, Routledge, 2002
Singh S., De oerknal (Dutch edition of the book “Big Bang”), De Arbeiderspers, Amsterdam, 2005 Störig H.J., Geschiedenis van de filosofie (Dutch edition of the book “Kleine Weltgeschichte der Philosophie”), het Spectrum, Utrecht, The Netherlands, 2008
van Fraassen B. C., The Scientific Image, Clarendon Press, Oxford, 1980
van Fraassen B. C., The Empirical Stance, Yale, University Press, New Haven & London, 2002
van Fraassen B. C., Scientific Representation: Paradoxes of Perspective, Clarendon Press, Oxford, 2008
Vermij R., Huygens – De mathematisering van de werkelijkheid, Veen Magazines, Diemen, 2007
Wolpert L., The Unnatural Nature of Science, Faber & Faber, 1993